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Abstract. We describe a 2 0  mosaic obtained by the Voronoi tessellation of a monmize 
assembly of discs at different packing fractions. The experimental device (hard discs moving 
on an air table) produces, far every packing fraction, a succession of mosaics in statistical 
equilibrium, which constitutes a statistical ensemble. This ensemble is large enough for 
fluctuations from the most probable distributions to be negligible. We use the maximum 
entropy principle to get the distribution of the polygons in 2~ mosaics generated from an 
assembly ofhard discs. Steric exclusion yields an extra conservation law, which is sufficient 
to give a Bood agreement with the experimental data. A similar behaviour in the six-fold 
parameter seems to hold far other mosaics. 

1. Introduction 

Bidimensional mosaics have been extensively studied because of their importance in 
metallurgy (grain aggregates), biology (tissues), geology (fracture patterns, jointings), 
etc. Their structure is, to first order, universal, apart from a length scale specific to the 
physical system, and is the archetype of a random, space filling cellular pattern or 
froth (Weaire and Rivier 1984). As in statistical mechanics, a particular dilute gas at 
a particular instant is one representative of an ensemble, the ideal gas under given 
macroscopic conditions; here, a particular mosaic is a representative of a statistical 
ensemble. The problems are how to extract from a few, often small samples, the average 
properties of the ensemble and the distribution of microstates, and how to explore the 
whole ensemble to minimize or control fluctuations within the ensemble. The last 
problem has so far only been solved on the computer, by Monte Carlo simulations 
(Peshkin et a/ 1991 and references therein). This paper presents an experimental 
solution to these problems, and extracts some conclusions on the characteristics of the 
ensemble. The method is new, and should lead to reliable conclusions once a large 
set of data has been collected. 

Bidimensional mosaics can be represented in a simplified way by convex polygons 
covering the plane and their generai properties are described in a satisiactory manner 
with few characteristics of the constitutive n-sided polygons; typically we need: 

the relative frequency p .  ( n  3) of n-sided polygons: practically, p .  is maximum 
for n = 5-6, then decreases monotonously at larger n ;  

the average number of sides m ( n )  of the nearest neighbours of n-sided polygons, 
which appears to be a linear function of l /n (Aboav’s law, Aboav 1980); 
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the average area A. of n-sided polygons. In  many cases, it was verified that An 
behaves linearly with n 

A. =Ao(n -no)  n 3 3 .  (1) 
This is the well known Lewis law (Lewis 19281, which has been more or less justified 
in evolutive processes (Weaire et a/ 1986). 

Actually, the Lewis law is not the only possibility and in the present paper we shall 
show a mosaic issued from a tessellation in an assembly of hard discs where steric 
exclusion is responsible for a different behaviour. In that case (Lemaftre et a/ 1992a), 
A. is well fitted by 

A, = a n  + b t  c / n  (2) 
where a, b, c are constants. The extra l / n  term is not a small correction and it is 
precisely that term which allows us to get most quantities of interest, such as the p .  
or variance p2. In the next section, we explain how our mosaics are made, how they 
are continuously changing while remaining in statistical equilibrium, and present our 
mosaics and their experimental characteristics. In section 3, we recall the Rivier- 
Lissowski approach (MAXENT principle) (Rivier and Lissowski 1982, Rivier 1992) and 
show how it works in our case. In the last section, we compare those results to our 
exDerimental data and initiate a brief discussion on hidden constraints. 

2. Disc assemblies 

Our mosaics are Voronoi-Dirichlet tessellations obtained from monosize hard discs 
assemblies. Discs are set on a n  air cushion table (Lemaitre et a/ 1990); they rearrange 
permanently because of the air flow through the table and small local defects of the 
table, and after a short thermalization time, we get a homogeneous assembly, which 
may be thought of as a particle gas. We explore the ensemble by taking successive 
snapshots of the structure (figure 1) which, although in statistical equilibrium, moves 
permanently. The tessellation is derived by tracing the mediator line between two 
neigrDour discs (figure 2): each disc is then the of coii\;en popygon iiia& of 

Figure 1. Experimental system: equal disc packing on an air table 
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Figure 2. Voronoi tessellation: grey discs are near neighbours of the central black disc, 
which is represented by a Voronoi polygon with n = 5  sides. For this central disc, 
n m ( n ) = 5 m ( S ) = 3 2  (Lema& ern1 1992a). 

such mediator lines and the polygon contains completely the particle. All quantities 
of interest, number of edges of the polygon, number of edges of the near neighbours, - 
perimeters, lengths and areas are derived by using an image treatment analysis. 

For our cells, it was shown (Lemaitre ef a/ 1992a) thar the Lewis law does not hold 
even at rather small coverage (C 920%). The average area A. is not a monotonously 
increasing function of n, but shows a minimum for n = 5-6 which is more pronounced 
for compact systems (figure 3). Steric exclusion is responsible for such behaviour as 
a n-polygon cannot have an area less than that of the regular n-polygon circumscribing 
the disc: triangles and quadrilaterals need more room than pentagons or hexagons, 
whence the minimum close to n = 5-6; n = 6 corresponds to the regular arrangement 
around the centre disc. For n > 6, the area increases again as the smallest distance 
must increase to allow the possibility for new neighbours. When n is large (n =9-lo), 
the central disc plays a less important role and as in previous experiments, A,, grows 
linearly with n. 

To support our results, we have performed another analysis on numerical assemblies 
of hard discs built using the random sequential adsorption (RSA) procedure (Feder 
1980, Feder and Oiaever iYXOj: the centre of a disc is chosen at random in a given 
area and if it does not overlap an already deposited disc, it is definitely deposited and 
fixed. This algorithm i s  very different from the experimental particle gas as no reorganiz- 
ation is possible. Nevertheless, steric exclusion is again the determinant factor. In RSA 
mosaics, the Lewis law is violated but in a less spectacular way and at higher concentra- 
tions. In both cases, a correct approximation is given by expression (2); the linear 
term corresponds to the large n behaviour and the last term is the simplest, but not 
unique, possibility to get an extremum. It fits well our experimental data. 

We must emphasize the peculiar characteristics of our mosaics: first, steric exclusion 
plays a fundamental role, which is not the case in the usual examples where small 
cells are always possible (see for example the foams by Aboav 1980). Second, the 
number of cells remains constant in time: we are in the presence of a non-evolving 
process, probabiy in thermodynamicai equiiiiirium. i i i e  imposSibiiiity of destroying or 
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Figure 3. Plot of the average area A. versus n at four concentrations: C = 2.5%, C = 16%. 
C =45.5% and C = 73.5%. 

creating cells is probably not as important as was sometimes claimed in the literature: 
it has recently been shown that the Lewis law is violated too during the coalescence 
process of breath figures (Steyer er a1 1990). In this nice experiment, the number of 
cells decreases hut the total quantity of matter is preserved. 

3. MAXENT principle 

We first recall how the distribution p. of the edges can be derived from entropy 
requirements, then show how it applies in our hard core systems. 

3.1. Riuier-Lissowski approach 

Rivier and Lissowski (1982) have associated with the probability distribution p. an 
entropy 

S = -1 p. Inp,. (3 )  

The choice of this form relies on a hidden statistical hypothesis, namely the assignment 
of equal a priori weights to each value of n. I t  is then natural to determine the p. by 
assuming that S is maximum provided all known conservation laws Or constraints are 
taken into account (MAXENT principle). 
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We have the two straightforward conservation laws 

cpP.=1 (normalization) 
n 

E n p . = 6  (the average number of edges is 6). (4b) 

This last identity is a consequence' of the Euler theorem when three and only three 
!ices occ??r E! the szme v&f!x, which is here the generic si!L!ltiCn (i! is the r??!e i" 
tessellations). In  our case, the six-fold axis is especially important as it corresponds 
to the ordered array and to the maximum number of close contacts. Further on, we 
have a constraint on the total area 

n 

1 AA = Ao (fixed average area). ( 5 )  
n 

Oiher consirainis probabiy exisi, For exampie reiaied io the short-range correiaiions 
and to the Ahoav law (Aboav 1980), but no simple formnlation for them is known. 
Assuming that such an additional constraint may be written in a similar way, 

I fd"  =fo (6) 
n 

where f. is some function depending on the geometry or dynamics of the mosaics, 
Rivier and Lissowski have shown that the least biased distribution of the polygons has 
the form 

p . = K ~ ' e x p ( - A n - ~ A . - ~ ~ )  (7) 
where K is a normalization constant and A, fi ,  U are the Lagrange multipliers issued 
from conditions (4)-(6). Maximization of entropy with three constraints is possible 
urlly W l l C l l  dl LFLL>L ,"U, rypsa "1 y"'y&ul,b dlF p,cacrrr. 11 W G  l l d Y c i  urlry p~Lllagurls, 
hexagons and heptagons, partially ordered zones exist and the entropy is not a 
maximum. Actually, octogons ( n  = 8) are always present, even weakly. 

If the Lewis law is satisfied, condition (5) is automatically fulfilled as a consequence 
of (4b) and the parameter p may be set equal to zero. This is the most common 
situation, and unfortunately it is not a simplification: as the probability p .  is not a 
mnnntn..ir A n r m q d n n  fI.nrt;nn "f fn- rm,lll - rslnnlnmPntorlr hiArlmn 
..I".L"L"I,,I YC'.CY"..'6 LY..-..".. "1 .. IY1  *I..".., Y '"yy'.'...'L.LY', ..a "....I. .a,.LYLL.".. 

(6) must exist and one fundamental problem is then to find it. 
If the Lewis law does not hold and if the conditions (4)-(5) alone are sufficient to 

get a correct fit for the p", the possible hidden condition (6) becomes irrelevant since 
it is a consequence of conditions (4)-(5), in particular of the law (5) which replaces 
the Lewis law. We shall rely below on that idea. 

3.2. Application to hard core systems 

Coming back to our own mosaics, the Lewis law is replaced by expression (2)  for A, 
which implies the constraint 

^_I__ __.LA.. "I ,^^^I F ._. ..̂" ^C ^^I --- ---- ̂ _. ,'- ... " I."..,. -..I.. ^̂ ..̂  

Let us assume that no further constraint exists. Then the probability for an n-polygon 
reads 

p .  = K - '  exp -An -- ( n") (9) 
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where K ,  A, Y are determined from (4n). (46) and (8). The explicit determination of 
these parameters is not necessary to get p .  or related quantities such as the entropy 
(equation (3)) or the deviation to the hexagonal configuration 

P 2 = ( n 2 ) - ( n ) 2  (10) 
both quantities being measures of the dispersion of the law p". Technical points and 
expressions in term of two (related) parameters are given in the appendix. 

2 

4. Results and discussiou 

We have represented all the quantities introduced above in terms of the probability 
of presence of hexagons, i.e. in term of p 6 .  This parameter plays a central role in our 
analysis because the average number of neighbours is six and p6 is (in general) the 
largest probability; moreover, in our specific case (monosize discs) it is a measure of 
the importance of six-fold symmetry. Another possibility would be to use as a parameter, 
global quantities such as S or p2 but they are less sensitive, precisely because they are 
averages. Such measurements were reported in a companion paper (Lemaitre er a1 
1992b). 

In figure 4 we have plotted p2 as a function of p 6  for our hard core experimental 
data, and as derived from the MAXENT principle with the constraint (8) implied by 
the expression (2) for A,, in the case n = 4 to 10. The agreement is then fairly good. 
The same has been performed for the entropy, with identical conclusions but we shall 
not consider it here. Similarly, we have plotted in figures 5a and 56 the ratios p 4 / p 6 ,  
p s / p 6 ,  p 7 / p 6  and p s l p s .  Again, experimental and theoretical results agree well for bard 
core tessellations. 

The above analysis relies on the use of the law (2) instead of the Lewis law. 
Equivalently, one could make no hypothesis on the average sizes of the polygons, and 
introduce instead an additional geometric constraint (6) with the Ansatzf, = l / n .  With 

0 Table 
Aboav (1980) 
RSA 

0 aain(1978) 
RVP (Hcmann el al 1989) 

A Boots(1982) 
A Hinrichsen et a1 (1990) 
+ n . ~ : - . n " o " \  : \  
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Figure 5. Plot of p J p ,  as a function of p6 for air table and RSA assemblies compared to 
the theoretical variations for fn = I / " .  ( a )  Plot of p4/pa and p5Jp6. ( b )  Plot of p,Ips and 
psIpa. The corresponding ratios for Aboav foams are given for cornpanson. Also are shown 
theoretical variations of p51p6 and p,lp6 for f. = n2. 

this vewpoint, we can try to fit the results existing in the literature with a law of the 
form (9). This was done in figures 4 and 5 .  It is worthwhile noticing that, once the 
nature (8) of the constraint is known (but not necessarily the numerical value), then 
all pn are uniquely determined in terms of the single parameter p6-at the order of 
approximation which was fixed before. The plot of p2 versus p b  is in some sense 
universal. This may explain why RSA and air table assemblies behave in the same way 
(Lemaitre et a1 1992b) and why the representative point for RVP polygons tessellation 
is also on the same curve, which is rather natural as they can he thought of as a low 
density limit for hard core systems (Lemaitre et a1 1992a. Hermann et a1 1989). Data 
found in the literature for various bidimensional structures fit the curve too. This 
strengthens the idea that some universal features exist, at least for most mosaics. There 
is however an important exception, which is related to the foams generated by Aboav 
(1980) and analysed at different stages of the coalescence process: at long times, large 
n-cells are present. Another hidden law, 'stronger' than the I / n  constraint, probably 
exists, which should account for the wider spread in the distribution. 

A question then arises, which it would be interesting to answer. Why does f, = l / n  
work so well and even for systems where the Lewis law holds, like RVP polygons? 

Another possibility remains that the quantities studied are not very sensitive to the 
choice off.. We have performed several trials: power law (f. = n" with negative and 
positive exponents), logarithm law (f. =In n or f. =In( n - 2), which is Rivier's guess 
(Rivier 1985)) or exponential law ( fn =exp(*n)). In most cases, the plot of p2 is in 
good agreement with the experimental data. This may be explained by the common 
shape (convex or concave monotonous curves) of all functions f, and by the correspond- 
ing slow change in the exponent 8 (see appendix) for all these laws; moreover, in the 
calculation of the variance g 2 ,  compensations probably exist. With the quantities p 4 / p b ,  
p 5 / p 6 . .  . , it is really possible to distinguish between the constraints and the best fit of 

such as f. = n 2  gives, for ps and p, variations, more symmetry than observed experi- 
mentally. More fundamentally, is the choice f. = I /n  related to the I/n expansion in 
the Aboav law for nearest neighbours which seems up to now to be universal, even if 
the slope itself is not always close to 5 (Steyer er a1 1990, Peshkin et al 1991)? 

experimefita! dztz is nbtaincd with f" = !In: for exi?mp!e, 2s shnwn In figure 5 ,  I !zw 
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5. Conclusion 

We are able to produce experimentally with our discs on the air table, mosaics which 
are representative of an ensemble of froths in statistical equilibrium. We obtain 
distributions and properties for this ensemble, notably the distributionp. of the number 
of sides for each cell. We have shown that a maximum entropy principle gives a good 
account of the distribution p. of the sides and of related quantities, provided the 
average ( l /n )  is fixed. The fit remains good in many situations described in the literature, 
even though the Lewis law may hold. The constraint on f. = l / n  is probably a deeper 
condition than expected. 

A more detailed study should be undertaken, to see whether other classes of 
constraints may exist, as seems to be the case for Aboav foams. 
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Appendix 

The technical aim consists of replacing parameters A and Y in (8) by variables easier 
to handle. The method holds for any constraint /.. Starting from p.= 
K-' exp(-An - U/"), we first rewrite (46) as 

I: ( n  -6) exp[-A(n -6) - u ( f " - f 6 ) ] = 0  (AI) 

where the central role of n = 6 is clearly put in evidence. Then, the contribution of 
pentagons and heptagons is made more 'symmetric' by mutliplying both sides 
of (Al )  by 

exP[-v(2f6-fS-f7)/21 

so that n = 5  and n = 7  contribute with inverse terms e" e-"'1~-A1/2= Y and 
e-A evCJ- 5 

1 ( n  -6) y6-" e = 0 with P. = ( n  - 6)(/s -f7) + 2fn - (fs +f7) (A21 

I 2  ' = Y-' respectively. Substituting Y in A and v, we get 

and by construction ps = p, = 0. Now, as octogons usually occur before quadrilaterals, 
we particularize n = 8 by setting Z = e-"'ni2 and rewrite condition (Al) in its final 
form as 

1 ( n - 6 ) y 6 - - " Z d P ~ = 0 .  (A31 

With this substitution, all quantities are rewritten in terms of Y and Z (as calculated 
from A3). We have, 

pn = [ y6-"ZPa/P.]/A 

fi2 = 1 ( n  - 6)' Y "-"Z'"ip~]/A (A4) [. 
A =E Y6- 'ZPn/Pa  

n 



Voronoi ressellarions of hard discs 6177 

where A is the normalization factor. Given Y, we get Z through (A3) then deduce all 
relative frequencies, and related quantities. As an example, forf, = I/n, the exponents 
are respectively p41pu = 2, p6/ps = -419, p9jpu = 64/27,. . . . The negative value for n = 6 
is in agreement with the existence of hexagons at any concentration, while other 
polygons appear successively: first n = 5 and 7 ,  then n = 8, and n = 4 a little later. This 
constatation may be extended to any concave (or convex) function f.. 

As an example, let us write explicitly the solution when only n =4-9 polygons are 
represented. Equation (A3) is rewritten 

1 2 zy 
Y Y2 Y3 2 y 2 2 " +  y - - - 2 - - 3 - = 0  a = P 4 / P s .  Y=P9 IPu  

and a solution exists for Y > 1 (2 = 0 if Y = 1). Then 

p4= Y22=+'/A' p s  = YZ"/A' p 6 =  l / A '  

p ,  = Z 6 /  YA' ps = Z6+'/  Y'A' p9 = ZYts/ Y3A' 

p2 = Z 6 [  Y + Y-l + 4 2 ~ - ~ + 4 Y 2 2 =  +9ZyY-)]f A 
with A'=AZ6= 1 + Z 6 [ Y +  Y - ' + Z Y - 2 +  Y2Z"+Z'Y-3]  and 8=lp , l /p8 .  

approximation is shown in figures 4, 5a and 5b. 
A better approximation consists in taking p l o  into account. The corresponding 
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